
RD-AL52 208 MULTIGRID ALGORITHMS ON THE HYPERCUBE MULTIPROCESSOR iI
(U) YALE UNIV NEW HAVEN CT DEPT OF COMPUTER SCIENCE
T F CHAN ET AL- FEB 85 VALEU.'DCS/RR-368

UNCLASSIFIED N@90i4-82-K-i84 F/G 9/2 U

11

III I. 28I6 I3- 11.012.
lllli II 32 DII

111111.2511111.0

MICROCOPY RESOLUTION TEST CHART

• - .-:- '.'. .:': ..
-: -: P ' , , : :

'. , I~~~~~~~RpROI"tIf- r. ,AT Q:, . ; * , , .(" ,:-':, j I

iO

T 0V

N

Multigrid Algorithms on the Hypercube Multiprocessor

Tony F. Chan and Youcef Saad

Research Report YALEU/DCS/RR-368
February 1985

, If&p)~ Q b~y
oll.: • ",' ¢ l

.......... . APR 03 1985

aYALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

85 03 -

V' 4

Abstract. This paper examines several ways of implementing multigrid algorithms on the hypercube
multiprocessor. We consider both the standard multigrid algorithms and a concurrent version
proposed by Gannon and Van Rosendale. We present several mappings of the mesh points onto
the nodes of the cube. The main property of these mappings, which are based on binary reflected
Gray codes, is that the distance between neighboring grid points remains constant from one grid
level to another. This results in a communication effective implementation of multigrid algorithms
on the hypercube multiprocessor. /

Multigrid Algorithms on the Hypercube Multiprocessor

Tony F. Chan and Youcef Saad

Research Report YALEU/DCS/RR-368
February 1985

This work was supported in part by the Office of Naval Research under grant N00014-82-K-0184,

by IBM/Kingston under a joint study grant, by the Department of Energy under contract DE-
AC02.81ER10996 and by the Army Research Office under contract DAAG-83-0177.

Keywords: Multigrid algorithms, hybercube multiprocessor, Gray codes, parallel computing,
partial differential equations, domain decomposition.

2"- -
" " " " ' " "" " " " ' ° "p...v"

0

1. Introduction

In the recent years there has been a growing interest in the design of parallel algorithms
for solving various mathematical problems that arise in scientific computing. One of the major

I objectives is to construct algorithms, either by restructuring existing ones designed for sequential
machines or by inventing new algorithms, that can efficiently exploit the parallelism available in a
given machine architecture. This task is often complicated by the need for efficient communication
between the processors in a parallel architecture. This communication overhead, which is absent in
analyses of sequential algorithms, can be a bottleneck if not handled efficiently. Thus, a successful
implementation of an algorithm in a parallel architecture must not only decompose a given problem
into appropriate smaller pieces for each individual processors to process, but also must arrange this
assignment so that the communication overhead is kept at a minimum.

In this paper, we study in detail a particular algorithm-architecture combination: the imple-
mentation of the class of multigrid algorithms for solving elliptic partial differential equations on the
hypercube multiprocessors. Multigrid algorithms are among the most efficient methods for solving
partial differential equations. In addition to their immediate effects on applications, multigrid al-
gorithms are also of theoretical interest because it can be proven that they can compute a solution
to truncation error accuracy in time proportional to the number of unknowns. This optimality re-
sult, together with the fact that many aspects of the multigrid algorithms are highly parallelizable,
makes it natural to consider parallel implementation of multigrid algorithms. There have been a

* few papers published on this topic: Grosch [5, 6], Brandt [2] Gannon and Van Rosendale [4] and
Chan and Schreiber [3].

- The hierarchy of grids in multigrid algorithms presents a special challenge in minimizing the
communication overhead in a parallel implementation. For even though it is possible to map the
grid points of the finest grid onto many architectures such that neighboring grid points are mapped
into neighboring processors, it is generally much more difficult to preserve this proximity property
for the coarser grids required in the multigrid algorithms. <.Grosch [6]_ asserts that a perfectlty
shufled nearest neighbor array is a suitable architecture. Gannon and Van Rosendale [4] propose a
concurrent variation of the standard multigrid algorithms and consider implementations on mesh-
connected arrays, permutation networks and direct VLSI imbeddings. In this paper, we consider
the hypercube multiprocessor [12]. Of the many parallel architectures that have been proposed in
the past few years, the hypercube multiprocessor is one of a few that are commercially available
and one for which there has been some experience on its usage. We show that the hypercube
architecture is also ideally suited to the implementation of multigrid algorithms, especially regarding
the communication overhead.

In Section 2, we briefly describe the architecture of the hypercube and in Section 3 we describe
the essential features of the multigrid algorithms with regard to their parallel implementations. In
Section 4, we consider various mappings of the grid structures behind the multigrid algorithms into
the nodes of the hypercube in a communication-effective way. In Section 5, we briefly analyze the
arithmetic and communication complexity of the proposed parallel algorithms and we present some
concluding remarks in Section 6.

2. The Hypercube multiprocessor

The hypercube is a multiprocessor array with powerful interconnection features introduced
under different names (Cosmic cube, boolean n-cube, n-cube, etc.. See [1, 7, 12] for references).
An n-cube consists of 2" nodes that are numbered by n-bit binary numbers, from 0 to 2" -
1 and interconnected so that there is a link between two processors if and only if their binary
representation differs by one and only one bit. For the case n = 3, the 8 nodes can be represented
as the vertices of a three dimensional cube, see Figure 1.

o

110 111

100 101

000 001

Figure 1: 3-D view of the 3-cube.

The hypercube has been experimented in several institutions and currently attracts increas-
ing attention. A commercial multiprocessor based on the hypercube topology has been recently
announced by Intel. There are many reasons for this growing interest in the hypercube config-
uration. One of them, perhaps the most important, is that the hypercube imbeds many of the
classical topologies such as two-dimensional or three-dimensional meshes (in fact arbitrary dimen-
sion meshes can be imbedded) [12, 11]. The diameter of an n-cube is n: to reach a node from
any other node one needs to cross at most n interprocessor connections. Another appealing fea-
ture of the hypercube is its homogeneity and symmetrical properties. Unlike many other ensemble
architectures, such as tree or shuffle exchange structures, no node plays a particular role. This
facilitates algorithms design as well as programming. On the other hand, each node has a fan-out
of n, a logarithmically increasing function of the total number of processors, and so with increasing
n, there will be increasing hardware difficulties to fabricate each of these nodes.

Seitz [12] describes a real hypercube machine which is utilized at Caltech, and for the first
time presents some details on software and applications of a machine based on the hypercube
architecture. Saad and Schultz [11] analyze the intrinsic topological properties of the hypercube
regarded as a graph, and propose several algorithms for transferring data between its nodes101. A
generalization of the hypercube topolgy has been proposed by Bhuyan and Agrawal [1].

3. Multigrid Algorithms

In this section, we describe briefly the essential features of the multigrid algorithms that are
relevant to their implementation on the hypercube.

Multigrid algorithms are generally used to solve continuous problems defined by differential
or integral equations on a given region in space. To facilitate our presentation, we restrict our

2

* . , . • . . . *. . . * . . * * - * . - *

attention to the important case of the solution of linear elliptic differential equation:

Lu- f

on a d-dimensional square in R d. Such problems are usually solved approximately by discretizing
the problem via a d-dimensional grid, say with m grid points in each coordinate direction. After
applying an appropriate discretization technique (e.g. finite difference or finite element), the dif-
ferential equation is transformed into a set of linear algebraic equations of size md. Many different
methods can be used to solve this set of algebraic equations, e.g. Gaussian elimination or conjugate
gradient methods. The class of multigrid methods is distinguished from others by their use of a hi-
erarchy of coarser grids (in addition to the one on which the solution is sought) in order to improve
the rate of convergence to the desired solution. The basic idea is that if an iterative method (such
as the Gauss-Seidel relaxation method) is used on the finest grid, convergence usually slows down
after the high frequency components of the error has been annihilated and thus by transferring
the problem onto a coarser grid, the lower frequencies become the high frequencies of the coarser
grid and therefore can be annihilated more rapidly than on the fine grid. Employing this idea
recur~ively, one eventually arrives at a grid that is coarse enough that the problem can be solved
completely by either direct or iterative methods.

To describe the method more precisely, we denote the hierarchy of grids by Gi, with GI being
the coarsest grid, the discretization of the elliptic operator on Gi by Li and the corresponding
solution and right-hand-side by ui and f', the operation of projection from Gi onto a coarser grid
Gi-1 by P" and the interpolation back onto Gi from a coarser grid G'-1 by i. With this notation,
the classical multigrid algorithm can now be described succintly as:

ALGORITHM MG(L', fg, u')

Comment: Solve Liu fi
IF G' is the coarsest grid THEN

Solve L' ui - fP exactly.
ELSE

Perform s smoothing iterations.
Compute the residual:

ri = /i - Li ui.

Project the residual onto the next coarser grid
gi-1 = Pi ri.

Solve the coarse grid problem: Li v' _ ri recursively by c iterations of MG:
Repeat c times:

MG(Li- 1 , g'i-, vi-).
Interpolate the correction from Gi-1 back to Gi

Ui = Ui + I Vi-1.
ENDIF

The parameter c controls the flow of the algorithm. The most common cases of c 1 and
c -2 are often referred to as the V-cycle and the W-cycle respectively.

It can be proved that, under certain regularity assumptions on L, Algorithm MG reduces
the error in the solution on G' by a constant factor. On a sequential machine, this takes a time

3

a b

Figure 2: One dimensional pyramid.

proportional to O(md). When combined with an appropriate outer iteration which provides a good
initial guess on G', the error can be reduced to truncation error level in O(md) operations, which
makes the method optimal because the number of operations is proportional to the number of
unknowns. Note that although iterative in nature, Algorithm MG could be considered as a direct
method.

Now we consider implemention on a parallel machine. The major steps of Algorithm MG are:

1. Smoothing;
2. Computation of the residual;
3. Projection onto a coarser grid;
4. Interpolation from a coarser grid.

The first two are intra-grid operations while the last two are inter-grid ones. There are generally
two opportunities for exploiting parallelism: performing operations on a given grid in parallel and
performing operations on all grids in parallel. The first approach is more straightforward. Since
the operator L' is usually a local operator, both the smoother (e.g. Jacobi or red-black SOR) and
the computation of the residual can be computed in parallel. Similarly, the operators Pi and P
are also local operators and thus the projection and interpolation steps can also be performed in
parallel. Such parallel multigrid algorithms have been considered by Grosch [5, 6], Brandt [2], and
Chan and Schreiber [3]. The major drawback of this class of parallel multigrid methods is that
at any given instance, only one grid is active and therefore the processors assigned to the other
grids are idle. In order to have more efficient processor utilization, Gannon and Van Rosendale
[4] considered a concurrent multigrid algorithm in which all processors on all grids are active all
the time. Note that this approach represents a deviation from the standard multigrid algorithm
and the extra operations must be designed carefully so as to improve and not diminish the rate of
convergence.

For simplicity, we assume throughout this paper that the number of grid points in each coordi-
nate direction on Gi , denoted by mi, is given by mi = 21i-ml and that the Li's are nearest-neighbor
stencils (e.g. the standard second order centered difference stencil for the Laplacian). For such
problems, the natural architecture for the multigrid algorithm is the pyramid, a one dimensional ver-
sion of which is shown in Figure 2. The ' o' points correspond to the coarsest level, the 'x' points to
the second level and the 'o' points to the third and finest level. This topology completely describes
the communication pattern between each grid point in the grid hierarchy. In other words, each
connection in the pyramid represents a data flow path required by the algorithm. Unfortunately,

4

for two or three dimensional elliptic problems, the corresponding pyramid is three dimensional
and therefore cannot be easily implemented in two dimensional architectures without creating long
communication delays. For example, long wires are required in a direct VLSI implementation.

In this paper we are primarily interested in ensemble architectures consisting of a large number
of identical processors interconneted to one another according to some convenient pattern. There is
no global memory and no global bus (although some designs may incoporate a global bus this does
not constitute the main way of intercommunication). One advantage of such types of architectures
is the simplicity of their design. The nodes are identical and can be produced at relatively low
cost. Communication in ensemble architectures is done by message passing: data or code are
transferred from processor A to processor B by traveling across a sequence of nearest neighbor
nodes starting with node A and ending with B. For a given mapping of the pyramid onto the
ensemble architecture, grid points that are direct neighbors on the pyramid may be assigned to
processors that are far away from each other which may result in an increase in communication
overhead. Therefore, given a machine on which the multigrid algorithm is to be implemented,
the first task is to map the pyramid architecture into the architecture of the given machine in
such a way that the communication paths represented in the pyramid are as short as possible on
the machine. Notice that these communication paths involve both grid points on the same grid
and on other grids. While preserving locality on the finest grid for the intra-grid communications
is relatively easy on many parallel architectures, the inter-grid communications and the need to
preserve locality on coarser grids often present difficulties because neighboring grid points on the
coarser grids may not be mapped onto neighboring processors. Grosch[5, 6] proposes a perfectly
shuffled nearest neighbor array to handle this problem. Gannon and Van Rosendale [41 consider
a concurrent multigrid algorithm and suggested mappings for various parallel architectures, such
as the nearest-neighbor mesh-connected arrays, the mesh-shuffle connected network and the omega
network, but most of their mappings do not succeed in preserving the locality of coarser grids
communication paths in the pyramid. In the next section, we will consider mappings of the pyramid
onto the hypercube and show that it is possible to map the pyramid into the hypercube so that
all communication paths in the pyramid are mapped into communication paths in the hypercube
with length bounded by 2.

In designing such mappings, it is important to note that if the concurrent multigrid algorithm
is to be implemented, then each grid point of the pyramid must be mapped into distinct processors.
If only the standard multigrid algorithm is to be implemented, then points on different grids can
be mapped into the same processor. This consideration may impose different constraints on the
mapping.

" - . *. . - . " .

A

4. Mesh to hypercube mappings

In this section, we are concerned with the problem of mapping general grids in l-D, 2-D or
3-D into the hypercube. Clearly there are numerous ways to map grid points into the 2" processors
in general. For reasons of communication efficiency we are interested in those mappings that have
the property that any two neighboring points of the grid belong to neighboring processors. This is
a fairly easy problem to which we will bring a solution in Section 4.1.

As mentioned in the introduction a more critical requirement for the multigrid algorithms is
that two grid points, that are neighbors in the finer grid, should remain either neighbors or close
to each other when they are considered as grid points of a coarse grid. In other words it should not
only be inexpensive to access a neighboring point of the same grid but also a neighboring point of
a grid of different level.

4.1. One dimensional meshes and Gray codes
Consider the problem of assigning N = 2" mesh points which discretize some real interval, into

an n-cube in such a way as to preserve the proximity property, i.e. so that any two neighboring
mesh points belong to neighboring nodes. Another way of viewing the problem is that we are
seeking for a path of length N = 2" that crosses each node once and only once. In graph theory
terminology, we are looking for a Hamiltonian path.

If we number the nodes of the hypercube according to its definition, i.e. so that two neighboring
nodes differ by one and only one bit, a Hamiltonian path simply represesents a sequence of n-bit
binary numbers such that any two successive nodes have only one different bit and such that all
n-bit binary numbers are represented in the sequence. Binary sequence with these properties are
called Gray codes, and have been extensively studied in coding theory in particular [9].

There are many different ways in which Gray codes can be generated. One of the simplest
methods for generating Gray codes is as follows. One starts with the sequence of the two one-bit
numbers 0 and 1. This is a one-bit Gray code. To build a two-bit Gray code, take the same
sequence and insert a zero in front if each number, then take the sequence in reverse order and
insert a one in front of each number. In other words we get the sequence

G2= {00, 01, 11,10)

We can then repeat the process to build a 3-bit Gray code by taking the above sequence inserting
a zero in front, then taking the reverse sequence and inserting a one in front:

G3 = {000,001,011,010, 110,111,101,100}. (4.1)

More generally, if we denote by G? the sequence obtained from Gi by reversing its order, and by
0G (resp. 1G1) the sequence obtained from G by prefixing a zero (resp. a one) to each element of
the sequence then Gray codes of arbitrary order can be generated by the recursion:

G.+l = {0G., 1GR}. (4.2)

It is easy to verify that such sequences represent Gray codes. There are many possible Gray codes;
the particular one generated by the above algorithm is called a binary reflected Gray code.

We now describe a second algorithm for generating the binary reflected Gray code which will
turn out to be more useful later. Given the n-bit binary reflected Gray code

Gn = {g0,gl,...g2"-l}1

one can generate the (n + 1)-bit Gray-code as follows:

G,+i = {go 0, go 1,gi 1,g1 0,g2 0,g 2 1,g3 1,g3 0,.. .g; 0,gil,g;+1 I,g,+ 0,...}.

6

K -°

110 [X41 111 [X5]

100 [X71 101 IX61

010 [X3] 011 [X2]

CM)0 IXoI 01 fXJ]

Figure 3: Grid point assignment for a one dimensional mesh
of 8 points.

In other words, the general pattern for generating G.+i is to expand any two successive nodes a, b

of G, into the nodes a0, al, bl, bO. It can be proved that this algorithm indeed generates the binary
reflected Gray code [9].

We now return to our original problem of assigning the N = 2" mesh-points of a discretized
interval to the 2" nodes of an n-cube. A desirable property is that the mesh points are assigned to
neighboring processors, in order to achieve locality in communication. According to . ur previous
discussion on Gray codes, it is clear that the solution is to assign successive nodes of the mesh to
the succesive nodes of a Gray code sequence, i.e. to the nodes of the cube whose binary numbers
form a Gray code sequence. Thus, if there are 8 grid points numbered from 0 to 7, such that

XO<X <X2< 3<X4<XS<X6<X7

they can be assigned successively to the nodes of the sequence (4.1) in that order; see Figure 3.

4.2. Meshes in higher dimensional spaces
One of the most attractive properties of the hypercube as a network, is that it can imbed meshes

of arbitrary dimensions. This may in fact be the main reason for the success of the hypercube as a
multiprocessor. Consider an m1 X m2 ... X md mesh in the d-dimensional space Rd and assume that
the mesh size in each direction is a power of 2, i.e. it is such that mi = 2Pi. Let n = pl + P2+... pd
and consider the problem of mapping the mesh points into the n-cube, one mesh point per node.
Observe that we have just enough nodes to accomodate one mesh point per node. We show next
how to extend the ideas of the previous section to more than one dimension.

4 Our argument is best illustrated by an example. Consider an 8 x 4 mesh of a 2-dimensional
problem, i.e. d = 2 ,pl = 3 ,P2 = 2,n = Pi + p2 = 5. A binary number A of any node of the 5-cube
can be regarded as consisting of two parts: its first three bits and its last two bits, which we write
in the form

A = blb 2b3 cIc 2

where bi and ci are binary bits. It is clear from the definition of an n-cube that when the last two
bits are fixed then the resulting 2P, nodes form a p1-cube (with p, = 3). Likewise, whenever we fix

7

00

01

10

000 001 011 010 000 001 011 010

Figure 4: Two dimensional Gray-code for an 8 x 4 grid.

the first three bits we obtain a p2-cube. The mapping then becomes clear. Choosing a 3-bit Gray
code for the x-direction and a 2-bit Gray code for the y-direction, the point (x6 , yi) of the mesh is
assigned to the node bjb 2b3 clc2 where blb 2b3 is the 3-bit Gray code for xi while cIC2 is the 2-bit
Gray code for yi. We refer to the mapping (zi, yi) -+ bb 2b3 c1c2 as the cross product of the two
mappings xi --+ bjb 2b3 and yj -C c 2. This mapping is illustrated in Figure 4 where the binary
node number of any grid-point is obtained by concatenating its binary x-coordinate and its binary
y-coordinate. Note that any one column of grid points forms a Gray code and any one row of nodes
forms a Gray code.

Generalizations to higher dimensions are straightforward. We can state the following general
theorem.

Theorem 4.1. Any m, X M 2... X md mesh in the d-dimensional space R", where mi = 2" can be
mapped into an n-cube where n = P, + p2 + ... Pd, with the proximity property preserved. The
mapping of the grid points is the cross product GI x G2 x ... x Gd where Gi,i = 1,.. .d is any
one-dimensional Gray-code mapping of the mi points in the i1h coordinate direction.

4.3. One dimensional hierarchical Gray codes for standard multigrid methods
In the previous sections we have not addressed some of the important aspects of multi-level

meshes that appear in multigrid methods. In particular, a crucial issue we would like to examine in
this section is to find an efficient mapping of the mesh points of the different levels of refinement,
into a cube. In this section we consider only the classical multigrid approach. The concurrent
approach will be examined in the next section.

As an illustration consider a one-dimensional mesh on the interval [a, b] with the periodic
boundary condition u(b) = u(a) as is illustrated in Figure 2, which shows three different levels of

8

6 .

meshes discretizing the interval, starting with two points. It is desirable to assign the mesh points
of the finest mesh so that not only its neighboring points are assigned to neighboring processors
but also so that the points of the coarser meshes be not too far from each other. The reason for
this is clear: we wish to minimize the intercommunication not only when iterating at the finest
level but at the coarser levels as well.

For example, we would wish to map the 8 points of the bottom mesh of Figure 2 into a 3-cube
so that the points of the submeshes shown in levels 1 and 2 remain not too far from each other.
Ideally, we would like them to be neighbors. However, this turns out to be impossible. This is
easy to see because the binary representations of both xo and Z2 must differ from that of x, in
one bit. Since xo and X2 are distinct nodes, the bit in which they differ from x: must be different
and therefore the distance between zo and X2 is bigger than 1. More generally, if it were possible
[11]. For example, if we could have a connection between the nodes containing xo and X2 we would

have the cycle Xo, X1, X2, xO which is of length 3.
The next best distance we can hope for is two. Observe that in order for the nearest neighbor

mesh connections to be maintained on the finest level, the node assignment of the finest mesh
must be a Gray code. A Gray code which has the desired property that the distance between
any neighboring points of coarser submeshes is constant and equal to two will be referred to as a
hierarchical Gray-code.

It is important to note that not every Gray code is hierarchical. Consider the following Gray
code (obtained from the cross-product of two 2-bit Gray codes):

{0000, 0001,0011, 0010,0110, 0111,0101, 1101, 1111, 1101, 1010, 1011, 1001, 1000, 1100,0100}.

For this Gray code, the coarsest submesh would be assigned to the nodes {0000, 1111} which are
at a distance of 4 from one another.

Fortunately, the binary reflected Gray code described in Section 4.1 is hierarchical. More
precisely one can prove the following property of the binary reflected Gray codes.

Theorem 4.2. Let Gn - (go,g1,. . . ,g2-1) the sequence of n-bits binary numbers of the binary
reflected Gray code. Then gi and 9i+2' differ in exactly two bits, for all j>O such that i+2j < 2" - 1.

Proof. See [9] and [7].

We note that a similar problem was considered by L. Johnsson[7] in the context of odd-even
cyclic reduction for solving tridiagonal systems.

As a consequence of the above theorem, if we map the mesh onto the cube using the binary
reflected Gray code, the distance between neighboring mesh points at the finest level is one while
if we work on the coarser levels the distance is exactly two. The important fact here is that when
we change levels we will not pay a heavy overhead in communication as is the case in schemes
which do not preserve proximity. This can be easily verified for an 8-point grid on the 3-cube as
is illustrated in Figure 3. As a further illustration, if the total number of mesh points of the finest
level is 16, we should assign the points

XO<X 2< ... <X15

successively to the nodes

0000,0001,0011,0010,0110,0111,0101,0100, 1100,1101,111,1110,1010,1011,1001, 1000.

9

747

We can verify on this example that the 8 points of the next coarser level, i.e. the points

10, X2 , X4, X6 , ... X14

are assigned to nodes that are distant by two, namely the nodes:

0000, 0011,0110, 0101, 1100,1111, 1010,1001.

The same property can again be verified for the next level.

4.4. An Exchange Algorithm
Although it is satisfactory that the distance between neighboring mesh points at any level does

not exceed two, it would be a nonnegligible gain to bring that distance from two to one by some
exchange operation. When we pass to another level, we can exchange the data of some nodes, so
as to make the mesh points of that level reside in neighboring processors. Relaxation on this level
is then performed with improved efficiency since communication costs are divided by two. After
the sweeps are done we can repermute the data to their initial assignments. This is effective if
sufficiently many relaxation sweeps on each level are performed in order to pay off for the initial
and the final data exchanges.

To explain how the exchange will be done, we need to use the secon+ algorithm for generating
the binary reflected Gray code described in Section 4.1. Let us start with the n-bit binary reflected
Gray code

Gn = {go,g1i,...g2n- I

and generate the (n + 1)-bit Gray-code as follows:

G.+j= (go O,go 1,gi 1,g1 0,g2 0,92 1,93 1,93 0,.. .gi +, 0,...}.

Recall that the general pattern for generating Gn+1 is from any two successive nodes a, b to insert
aO, al, bl, bO. Consider now every other node, which corresponds to the next coarser grid. We get
the sequence

{90 0,91 1,g2 0,g3 1, ...-gi 0,gil,gi+1 0, ... (4.3)

As shown before, every two successive nodes differ by two bits: the last bit and the bit that differs
between g- and gi+i. Now suppose that in the sequence Gn+i we permuted the pairs of the form
gl,g,0 wherever they occur (these occur only for i odd). We get the transformed sequence:

d.+1 = {9o 0,go 1,g1 0,g1 1,92 0,92 1,93 0,93 1,.. .gi 0,gil,gi+iO,gi+i 1,...}

In other words the general pattern is now aO, al, bO, bl where a and b are two successive elements of
Gn. Taking every other node of Gn+i, we get precisely the subsequence of Gn+i terminating with
a zero, i.e. 6 . = (go 0,91 0, g2 0,....gi 0..- .,,- -1},

* which apart from the last bit is the n-bit Gray code. Therefore, if we send the data (i.e the residual)
in processor gil for i odd, to its neighbor giO before we visit a coarser grid, all neighboring grid
points of the next coarser grid will then reside in neighboring processors. Finally, to show that this
property is still true at even coarser levels, observe that mesh-node assignment represented by C.-
can be considered as the binary reflected Gray code G. applied to a n-dimensional subcube -

the half of the (n + 1)-cube whose node labels have 0 in the last bit of its binary representation.
Therefore, by removing the last zero bit of dn the argument used for Gn+i can be used recursively
to show that, by similar exchanges of data prior to visiting coarser meshes, all neighboring grid
points on all levels are mapped to neighboring processor nodes.

Note that a similar exchange also occurs in the reverse direction when coming back from a
coarse grid to the next finer grid. This time the correction is sent instead of the residual.

Numbering the levels by 1, 1 = 0, 1, ... starting from the finest to coarsest level, we can sum-
marize the property of our algorithm in the following proposition.

10

z _V

Proposition 4.1. By transferring the residual from the nodes giZ0', i odd, of level I to the node
gOI+i, and the correction in the reverse direction, relaxation sweeps only require communicationbetween neighboring nodes.

This exchange method is illustrated in Figure 5.

4.5. One dimensional hierarchical Gray codes for concurrent algorithms
As was mentioned earlier, the previous parallel implementation of the standard multigrid

algorithm leaves many nodes inactive during coarse grid relaxations. In fact, as is shown in [3],
the efficiency of the standard algorithm decreases like (log 2m) - 1 as the grid size m increases.
An intuitive reason for this is that while the finer grids get a higher proportion of the available
processors, they are not proportionally active more often than the coarser grids. Therefore, a
natural strategy is to assign the mesh points of different levels to different nodes and have the
relaxation sweeps proceed at all levels in parallel. There are two types of communication for such
a concurrent algorithm. The first is as before between the nodes containing the mesh points of the
same level. Since there must be interaction between the mesh points of different levels, another
type of communication is between the nodes holding data of different levels. We would like the two
types of communication to be fast if possible.

Consider the example of Figure 2 where we have a total a 14 points, 8 for the finest (third)
level, 4 for the second level and, 2 for the coarsest level, to assign to the 16 nodes of a 4-cube. Note
that more generally the total number of mesh points at all levels is of the form (2 0+1 - 1)ml where
ml is the number of points of the coarsest level and n is the number of refinements. We would like
to assign these points to the 2 n+1 nodes of an (n+ 1)-cube. The 4-cube is split in two subcubes of
lower dimensions, as represented in Figure 6. The first subcube, consisting of all the nodes whose
labels have the bit one as their last bit, will contain the 8 points of the finest mesh. For the purpose
of having neighboring mesh points assigned to neighboring nodes, we will assign the points

XO _< X1 < ... <X .2- -1

successively to the nodes numbered gi 1 where gi, i = 0, ... 2n - I is the sequence of binary reflected

n-bit Gray code.
Let the x'2,i = 0, 1,.. .2 - 1 - 1 denote the grid points of the next coarser grid. Note that we

use the same subscript but the prime indicates that the same physical point is now represented by
two different points on the pyramid, namely X2V in the fine level and 4i in the coarse level. The
problem at this point is to assign the coarse mesh points 42j,i = 0, 1, ... 2n - - 1 so that

* the inter-level communication is inexpensive
* the grid-points of the same level are held in neigL ,ring Lodes.

Note that the remaining points, i.e. the grid points of all the coarser levels, will now be
assigned to the nodes of the form g, 0 where again gi, i = 0, 1... 2" - 1 is the n-bit binary reflected
Gray code. We assign the points of the next coarse grid successively to the nodes g 10 where
g!, i = 0, 1,..., 2" - - I is the sequence of (n - 1)-bit binary reflected Gray code. This is illustrated
in Figure 6, for n = 4 where we have assigned the 14 points of the example of Figure 2.

Consider the sequence of every other node in the finest grid:

gol ,g21 ,g41 ...

The points xO, X2, X4 ... held by these nodes correspond physically to the same points as the coarse
points xo, x 2, x4 ... that are held by the nodes

g10,g10 10
11 2 . .

110 [X4]1 [X51

100 [X71 101 [X61

010 [X3] 011 1X2]

000 [xo] 11 X) 001 [I]

100 [X6] 101

010 [~ 1

000 tXo] 001

11011

*000 [Xol 001

S Figure 5: The exchange algorithm. The picture shows the
transfers from fine to coarse grids only.

12

0000

1000

0010 [xe)J 1010 [x6]

0111 [X21 1111 [X5]

0011 [XI] 1011 [X61

001 [X31 101 [X41

4 000 [xO] 1001 jz7]

Figure 6: Mapping of three levels of grid points into a 4-cube.
The links between the nodes of the lower and upper horizontal
planes are omitted.

13

A!

Therefore, we want the distance between the nodes g!10 and g2i 1 to be small. In fact as we now
show this distance alternates between one and two. To prove this, we need to use the second
algorithm for generating binary reflected Gray codes, described in Section 4.1. Appending the bit
one to the sequence g; of the n-bit Gray code obtained by that algorithm from the (n - 1)-bit Gray
code sequence g , we find the sequence:

10 g O l g , g 101 '01 ,g 2',g11 ,g 11 ,g3'01 ,... ,g 0 9 g1 ,:1 ,g+ o0 ,...

This is precisely the Gray code for the finest mesh. Therefore the subsequence of every other node,
i.e. the sequence of nodes of the finest level which hold the points X2i,i = 0,2,...2"- 1 is

gO0 , 11 ,201 ,g'I 1I .. ,g ol 0 '

The nodes g!11 are directly connected to their counterparts g!10 containing the points 4 of the
coarser grid, i.e. the distance between them is one. However, the nodes of the form g!01 are at
distance 2 from their counterparts g!10 containing the points 4i of the coarser grid, the path of
length 2 being g 01 --+ g!ll - g!10.

To assign the grid poinfs "4, i = 0,1,... 2n-2 - 1, of the third level, observe that by removing
the ending zeroes from the sequence g!10 we are back to the previous situation with n replaced
by n - 1. Hence, we assign the points of the third grid successively into the nodes g7100, where
g!', i = 0, 1,... 2n - 2 - 1 is the (n - 2)-bit binary reflected Gray code. More generally, numbering the
levels from finest to coarsest, by I = 0, 1,..., we assign the grid points of level number I successively
to the nodes g()101 where the power refers to concatenation and where g!', i = 0,1, ... 2 n- 1 - I
is the (n -)-bit binary reflected Gray code. The proof that the distance between interlevel grid
points are at distance one or two is straightforward.

Proposition 4.2. The mapping
A)O . g041

21i
is such that the distance between neighboring points on the same level is one and the distance
between the grid points x(I) of level number I and 4 of level number (- 1) is at most two.

4.6. Higher Dimensional Problems
As a result of Theorem 4.1, the mappings that we have introduced so far extend straightfor-

wardly to higher dimensional problems. For mapping the grid of these problems, one uses cross
products of one-dimensional binary reflected Gray code mappings. A higher dimensional submesh
required by the multigrid algorithm is precisely the cross product of the corresponding one dimen-
sional submeshes. Therefore, the proximity preserving property of one dimensional binary reflected
Gray codes ensures that the same property holds for higher dimensional meshes.

However, there is a difficulty with the implementation of the concurrent algorithm. This stems
from the fact that, for higher dimensional problems, the total number of points on the pyramid
is not close to a power of 2. This misfit with the number of nodes in a cube leaves many nodes
unassigned. To be specific, consider a d-dimensional problem whose finest grid has 2" points to be
assigned to the nodes of an (n + 1)-cube. The total number of points Np on the pyramid is given
by

N= 2n +2 n - r +

2nI2
- nd '

2"
2n

1 - 2
-d

14
-0

V - VV *-K -
7

Therefore, the fraction of the total number of nodes that are idle is

2 n+1 - NP I - 2 - d+ 1

2n+1 2- 2-d+1"

Thus, for d = 2, a third of the nodes of the (n+ 1)-cube is never used while for d - 3, this fraction
becomes 3. This negates to some extend the advantage of being able to perform the concurrent
iterations on different grid levels simultaneously.

The above discussions assumes that there are enough processors to accomodate the number of
grid points. For higher dimensional problems, this may require more processors than are available.
In such cases, it is natural to consider assigning each processor to more than just one grid point.
For example, in a two dimensional problem, each processor can hold a line of grid points in one
coordinate direction. For the other coordinate direction, one can use the one dimensional binary
refected Gray code for the mapping. The proximity preserving property obviously holds. Since the
fine grids require fewer processors, such implementations can be more efficient in their usage of the
available processors [3]. This is just a special case of the more general idea of domain decomposition.
The idea is to decompose the finest grid into a collection of smaller domains, each assigned to a
different processor. In other words, a particular level of the pyramid, not necessarily the finest, will
get assigned one node per grid point. Pocessors are idle only when iterating on levels coarser than
this selected level. This has the effect of increasing the efficiency of processor utilization [81.

5. Complexity
In order to compare the performance of the three different algorithms described earlier, in this

section we analyze their arithmetic and communication complexity.
Let W. denote the arithmetic complexity for the work performed on one single grid before a

transfer to a different grid. Then Wa is given by:

Wo = (sto + t, + t;),

where s denotes the total number of relaxation sweeps performed on that grid (before and after
transferring to another grid), t. denotes the time for performing one relaxation sweep, tr denotes
the time for computing and projecting the residual and t denotes the time for performing the
interpolation. Note that Wa is the same for all three algorithms. For a general variable coefficient
problem in d dimensions with a nearest neighbor stencil discretization, injection of residuals and
linear interpolation, we can estimate these times as follows:

t. = (2d + 1) multiplies + (2d - 1) additions

tr = (2d + 1) multiplies + 2d additions
ti = (2d - 1) additions.

Next we consider the communication complexity of the algorithms. For simplicity, we assume
that each node of the hypercube can send and receive data on all its data paths simultaneously. Let
t, denote the time it takes to send one floating point number from one node to its neighbor. For
the standard algorithm with the binary reflected Gray code, we can estimate the communication
complexity We' on any grid as

w = (+ 2)2te,

where the (8 + 2) term denotes the number of data transfers needed to perform the s relaxation
sweeps and the computation of the residual and the interpolation; and the term 2t, is a bound for

15

" " N. : ' . .. " " "" " . - . . ." "
-' . . . , . . - . . , "" • " . " ." . ',

the time it takes for each transfer. Similarly, the communication complexity W' for the standard
algorithm with the exchange of data before transfer is estimated by:

W, =(+ 2)t, + 2t,,

because the exchange takes two extra data transfers, one before and one after transferring to a dif-
ferent grid, but afterwards each transfer takes only time t,. Finally, the communication complexity
W, for the concurrent algorithm is estimated by:

WIC + s 2)t, + 4t,,

because the transfer between grids takes two data transfers each way.

One interesting point to note is that

In other words, the standard algorithm with exchange is always better than the standard algorithm
withqut exchange, in terms of communication cost. Moreover, this advantage increases with in-
creasing s, the number of relaxation sweeps. For this reason, it seems that the exchange algorithm
is to be always preferred. Grosch [6] considers a similar strategy for his implemetation of multigrid
algorithms on the perfectly shuffled nearest neighbor array. It is more difficult to compare the

4 concurrent algorithm with the standard ones due to the difference in convergence rates. We only
note that for large values of s, Wc % W6.

Finally, for small values of d and s, the number of arithmetic operations and data transfers are
about the same order of magnitude and therefore communication should not become a bottleneck
if the time it takes to send one floating point number is not much greater than the time it takes
for one arithmetic operation.

6. Concluding Remarks

The hybercube seems to be ideally suited for implementing the standard multigrid algorithm.
A communication-efficient mesh-to-node mapping is possible via the binary reflected Gray codes
and extends to higher dimensional meshes in a straightforward way. The concurrent algorithm, on
the other hand, does not seem as well-suited to the hypercube for higher dimensional problems.
The main problem is that in order to have each point on the pyramid mapped into distinct nodes,
one has to use a hypercube of one higher dimension than that needed for just the fine mesh. As was
shown in Section 4.6 almost half of all the nodes are never used. For the concurrent algorithm to
be cost-effective as compared to the standard algorithm, its convergence rate must be at least twice
as fast. Unfortunately, very little is known about the convergence rate of the concurrent algorithm
and experiemental evidence indicates that the convergence rate decreases with increasing m [4].
Therefore, being able to perform the concurrent iterations on different grid levels simultaneously
does not pay. The only way in which we can still achieve maximal use of the available processors
for higher dimensional problems is by using each node of the one dimensional pyramid to hold a
line or a plane of unknowns, as discussed in Section 4.6.

When there are more than one problem to be solved on the same grid structure, the standard
algorithm on the hypercube can be made more effective by pipelining these different problems.
When the nodes assigned to a particular grid are inactive for one of the problems, they can be
working on the other problems. The programming of the individual nodes may be more complicated,
however.

It is interesting to note that the potential for a concurrent algorithm is there with the mapping
described in Section 4.3 for the standard algorithm. This is so because when the nodes assigned to

16

j.

a coarse grid are active, the other nodes, while not completely representing the inactive grids, can
still be used to perform some sort of concurrent relaxation sweeps.

Finally, the mappings described in this paper, being dependent mainly on the grid structure,
are useful for other variants of the standard multigrid algorithms, such as the nested iteration and
the FAS algorithms [13].

References

[1] L. N. Bhuyan, D.P. Agrawal, Generalized Hypercube and Hyperbus structures for a computer
network, IEEE Trans. Comp., C-33 (1984), pp. 323-333.

[21 A. Brandt, Multigrid solvers on parallel computers, M.H. Schultz ed., Elliptic Problem Solvers,
Academic Press, 1981, pp. 39-83.

[3] T.F. Chan, R. Schreiber, Parallel Networks for Multigrid algorithms: Architecture and com-
plezity, SIAM J. Scient. Stat. Comp., 3 (July 1985).

[4] D. Gannon, J. van Rosendale, Highly Parallel Multigrid Solvers for Elliptic PDE's, Technical
Report 82-36, ICASE, 1984.

[5] C.E. Grosch, Poisson Solvers on Large array computers, B.L. Buzbee and J.F. Morisson
ed., Proceedings 1978 LASL Workshop on Vector and Parallel Computers, 1978, pp.
98-132.

[6] , Performance analysis of Poisson solvers on array computers, Technical Report TR
79-3, Old Dominium University, 1979.

[7] L. S. Johnsson, Odd-Even cyclic reduction on ensemble architectures., Technical Report
YALEU/CSD/RR-339, Computer Science Dept., Yale University, 1984.

18] J.M. Ortega, R.G. Voigt, Solution of partial differential equations on vector and parallel
computers, Technical Report 85-1, ICASE, NASA Langley Research Center, 1985.

[9] E.M. Reingold, J. Nievergelt, N. Deo, Combinatorial algorithms, Prentice Hall, New-York,
1977.

1101 Y. Saad, M.H. Schultz, Communication in the the Hypercube multiprocessor, Technical Report
Computer Science Dept., Yale University, 1985. In preparation.

[11] Y. Saad, M.H. Schultz, Some topological properties of the Hypercube multiprocessor, Technical
Report , Computer Science Dept., Yale University, 1985. In preparation.

[12] C.L. Seitz, The cosmic cube, CACM, 28 (Jan. 1985), pp. 22-33.
[13] K. Stuben and U. Trottenberg, Multi-Grid Methods: Fundamental Algorithms, Model Problem

Analysis and Applications, W. Hackbusch and U. Trottenberg eds., Multigrid
Methods, Springer Verlag, Berlin, 1982.

17

FILMED

5-85

DTIC

